Welcome to the NCERT Solutions for Class 10th Mathematics - Chapter Quadratic Equations. This page offers a step-by-step solution to the specific question from Exercise 2, Question 3: **find two numbers whose sum is 27 and product is 18...**.

Question 3

Find two numbers whose sum is 27 and product is 182.

Answer

- Q:-
Is the following situation possible? If so, determine their present ages.

The sum of the ages of two friends is 20 years. Four years ago, the product of their ages in years was 48. - Q:-
A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.

- Q:-
Find two consecutive positive integers, sum of whose squares is 365.

- Q:-
Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:

(i) 2x

^{2 }– 3x + 5 = 0 (iii) 2x^{2}– 6x + 3 = 0 - Q:-
Is it possible to design a rectangular park of perimeter 80 m and area 400 m

^{2}? If so, find its length and breadth. - Q:-
Find the roots of the following quadratic equations, if they exist, by the method of

completing the square:

(i) 2x^{2 }– 7x + 3 = 0 (ii) 2x^{2 }+ x – 4 = 0 (iv) 2x^{2}+ x + 4 = 0 - Q:-
The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.

- Q:-
Find the roots of the following equations:

- Q:-
Find the roots of the following quadratic equations by factorisation:

- Q:-
Two water taps together can fill a tank in hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.

- Q:-
Use Euclid’s division algorithm to find the HCF of :

(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255 - Q:-
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

- Q:-
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).

- Q:-
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.

- Q:-
Complete the following statements:

(i) Probability of an event E + Probability of the event ‘not E’ =

(ii) The probability of an event that cannot happen is

(iii) The probability of an event that is certain to happen is

(iv) The sum of the probabilities of all the elementary events of an experiment is(v) The probability of an event is greater than or equal to

- Q:-
How many tangents can a circle have?

- Q:-
Show that any positive odd integer is of the form 6

*q*+ 1, or 6*q*+ 3, or 6*q*+ 5, where*q*is some integer. - Q:-
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

- Q:-
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.

- Q:-
Which of the following experiments have equally likely outcomes? Explain.

(i) A driver attempts to start a car. The car starts or does not start.

(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.

(iii) A trial is made to answer a true-false question. The answer is right or wrong.

(iv) A baby is born. It is a boy or a girl.

- Q:-
A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

- Q:-
Solve the following pair of linear equations by the substitution method.

- Q:-
A bag contains 5 red balls and some blue balls. If the probability of drawing a blue ball is double that of a red ball, determine the number of blue balls in the bag.

- Q:-
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i) t^{2}– 3, 2t^{4}+ 3t^{3}– 2t^{2}– 9t – 12(ii) x

^{2}+ 3x + 1, 3x^{4}+ 5x^{3}– 7x^{2}+ 2x + 2(iii) x

^{3}– 3x + 1, x^{5}– 4x^{3}+ x^{2}+ 3x + 1 - Q:-
Prove that the parallelogram circumscribing a circle is a rhombus.

- Q:-
A game of chance consists of spinning an arrow which comes to rest pointing at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8 (see Fig. 15.5 ), and these are equally likely outcomes. What is the probability that it will point at

(i) 8 ?

(ii) an odd number?

(iii) a number greater than 2?

(iv) a number less than 9? - Q:-
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.

- Q:-
Fill in the blanks :

(i) A tangent to a circle intersects it in

(ii) A line intersecting a circle in two points is called a

(iii) A circle can have

(iv) The common point of a tangent to a circle and the circle is called - Q:-
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively.

- Q:-
One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting

(i) a king of red colour (ii) a face card (iii) a red face card

(iv) the jack of hearts (v) a spade (vi) the queen of diamonds

- All Chapters Of Class 10 Mathematics

- All Subjects Of Class 10